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Critical behavior of a nonequilibrium system with two nonordering conserved fields
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~Received 26 February 2001; published 11 June 2001!

We investigate the critical behavior of a nonequilibrium system with two particle speciesA and B that
exhibits a continuous absorbing-state phase transition. The number of particles of each species (NA andNB) is
conserved by the dynamical process. Numerical results show that the order parameter exponentb depends on
the ratioNB /NA at criticality. Some aspects of critical dynamic behavior are also studied, namely, the decay of
the active density at criticality and the critical spreading of a perturbation to an absorbing configuration.
Anomalies in the relaxation are associated with the presence of different time scales in the dynamics of the
model.
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A considerable number of nonequilibrium models exh
iting phase transitions from active to absorbing phases h
been investigated over recent years@1#. These studies give
strong support to the conjecture made by Grassberger@2# that
continuous transitions to a unique absorbing state fall gen
cally in the universality class of directed percolation~DP!,
provided there are no additional symmetries or conserva
laws and only short range interactions are present. The s
critical behavior of various models with an infinite numb
of absorbing states also falls in the DP universality class

Nonequilibrium models with extra symmetries or co
served quantities, and indeed out of DP, have also been
vestigated. Models where the parity in the number of p
ticles is conserved@3–5# or with a complete symmetry
among absorbing states@6#, as well as models where bot
features are present@7#, all fall in the parity conserving uni-
versality class. More recently, models where one quan
~the total number of particles! is conserved led to the ident
fication of other universality classes: clearly, conserved
tice gases@8#, stochastic sandpile models with conserved
ergy @9,10#, and the nondiffusive limit of the two-specie
reaction-diffusion model@11# all fall in the same universality
class; different critical behavior is expected, however, if,
the last model, both types of particle are allowed to diffu
@12–14#.

In this work we consider a nonequilibrium system whe
two quantities are conserved. The model is defined such
each site of a one-dimensional~1D! lattice can be in one o
four states: empty, occupied either by oneA or oneB par-
ticle, or doubly occupied by oneA and oneB particle. Two
particles of the same species are not allowed to occupy
same site. The site is considered active if it is occupied b
pair (AB) of particles. Once an active site has been selec
~sequentially!, the dynamics proceeds as follows. If ea
neighbor is occupied by a particle of a different species
both neighbors are empty, or if one is empty and the ot
one occupied by one particle, then the active site beco
vacant and each neighbor receives one of its particles. If b
neighbors are active, no transfer can occur; otherwise, t
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is the transfer of just one particle from the active site to
allowed neighbor~if there are two different possibilities
each one is chosen randomly with probability 0.5). Th
when both neighbors of the active site are empty, or wh
one is empty and one is active, the number of active s
decreases by 1, whereas it increases by 1 if each neighb
occupied by a particle of a different species; in the oth
cases, there is simply a redistribution of vacant and dou
and singly occupied sites in the neighborhood. It is obvio
that the numbers of particles of each species are conse
by the dynamics. This model can be considered a tw
species generalization of a conserved threshold transfer
cess@8,15#.

We performed numerical simulations of the stationa
properties of the model. System sizes varied betweenL
5200 andL54000, the number of time steps betweent
523104 and t523106 ~closest to the critical point!, and
we averaged over 200 to 2000 independent samples.
initial configuration was generated by randomly distributi
the (NA) A particles and the (NB) B particles among theL
sites of the lattice, and periodic boundary conditions w
used. For a fixedNA and a smallNB (,L2NA), there are no
doubly occupied sites in the stationary state and the sys
cannot evolve from there; this corresponds to the inac
phase. As we increaseNB , the system undergoes a pha
transition to an active phase, where the concentration of d
bly occupied sites~the order parameterrAB) is nonzero. In
Fig. 1 we showrAB as a function ofNB for L52000 and
different values ofNA .

As can be seen, the transition occurs atNB5L2NA . The
long relaxation times that appear, as one might expect, v
close to the critical point can be associated with configu
tions like A A 0 AB B B B AB0 B B, where active sites
have one empty neighbor. If one waits long enough, o
is left with just one of these active sites with one emp
neighbor. Once periodic boundary conditions are be
used, this applies also to configurations lik
A A AB 0 B B AB 0 B B where the distance between th
two active sites fluctuates around the initial value in a ra
dom walk way and therefore the two active sites can be cl
to each other and coalesce into one active site after a s
ciently long time. ForNB5L2NA , and except for the cas
©2001 The American Physical Society04-1
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of an initial configuration with no doubly occupied and n
empty sites~which occurs with a very small probability!, the
concentration of doubly occupied sites at stationarity is th
rAB

(c)51/L, and becomes zero in the thermodynamic limit.
WhenNA5L, anyB particle that is being added leads

an active site~which, given the prescribed dynamics, w
move around in a random walk way! and there is no possi
bility of having an empty site; thereforerAB grows linearly
with NB . The situation is different forNAÞL. For a clear
comparison of the critical behavior that occurs for differe
values ofNA , we rescaled variables asy5rAB /(NA /L), x
5(NA1NB2L)/NA , so that the transition always occurs
xc50 andy51 whenNB5L; in Fig. 2 we have plottedy vs
x for the same data used in Fig. 1. As can be seen, the o
parameter follows a power lawy;xb, but b is a function of
NA . In order to extract this exponent we have used a log-
plot ~as represented in Fig. 3!; this yields b50.82~1! and
b50.50~1! for NA5600 andNA51000, respectively. Al-
though the curvesy vs x for NA5600 andNA51400 do not
coincide, the exponentb is the same, within numerical accu
racy. As a matter of fact the dynamics is completely sy
metric under the exchange ofA and B particles, so one ex
pects the same behavior right at criticality, forNA5600,
NB51400 and for NA51400, NB5600; althoughb de-
scribes the off-critical singularity, it is indeed plausible th
it should be the same in both cases. Accordingly,b~l!,
wherel5(NA /L) @l51/(11NB /NA) at criticality# should

FIG. 1. rAB as a function ofNB for L52000 and different
values ofNA : NA52000 ~n!, 1400~s!, 1000~h!, 600 ~L!.

FIG. 2. The same data as in Fig. 1, withy5rAB /(NA /L), x
5(NA1NB2L)/NA .
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be symmetric around 0.5; of courseb cannot be defined for
l50 since in the absence ofA particles there is no active
phase at all.

According to the finite size scaling ansatz the station
density of active sites at the critical point follows a powe
law behaviorrAB

(c);L2b/n', wheren' is the exponent tha
characterizes the divergence of the correlation length. T
givesb/n'51 for all l.

We then considered time dependent quantities. First
studiedrAB(t) at criticality, using homogeneous initial con
figurations, as before. In Fig. 4, we show a log-log plot
rAB(t) vs t for l50.3 and different system sizes.

The short-time decay of the order parameter density
lows a power lawrAB;t2u8 @u850.209~5!# over a few de-
cades; since this is independent of the size, it is proba
associated with a purely local process. For longer tim
rAB(t) exhibits a sharp drop and enters a second power-
regime rAB;t2u @u50.49~1!# before the final approach to
the steady state.

The relaxation timest(L) at criticality can be obtained
from the linear portion of a semilogarithmic plot of the e
cess densityrAB(t)2rAB

(c) . These relaxation times are ex
pected to scale ast(L);Lz. The present data are consiste

FIG. 3. Log-log plot ofy vs x for l50.5 ~h!, l50.3 ~L!. The
straight lines are least squares linear fits~slopes of 0.50 and 0.82
respectively!.

FIG. 4. Relaxation of the active site density at criticality, f
l50.3 ~from top to bottom,L52000,1000,400,200). The straigh
line 22222 has slopeu50.49. The straight line2•••2•••2 has
slope 0.209.
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with z52 ~see Fig. 5!; however, delimiting the linear part in
the semilogarithmic plot is a source of numerical error. Al
the above estimate foru is consistent with the scaling rela
tion u5b/n i5b/n'z , so the second power-law regime
likely to describe the asymptotic evolution of the order p
rameter density. A more detailed study of the effects of i
tial conditions, better statistics, and more extensive data
required in order to establish whether the above expon
are affected by the details of the initial preparation.

Different scaling regimes have been found previously
models with just one kind of particle~and one conserved
quantity, the total number of these particles! @9,10#. In the
1D fixed energy version of the Manna stochastic sand
model studied in@10#, the initial dynamics is dominated b
relaxation of the initial grain profile, whereas some slow
laxation is likely associated with long-wavelength dens
variations. In the present model there are two types of p
ticle and more complex relaxation processes can be
pected. However, the long-time dynamics appears to be
trolled by random walk processes. These are indeed pre
wherever an active particle is surrounded by particles of
same species,B B AB B B B or A A AB A A; also, the
process by which two active sites reduce to one is rand
walk like, as explained above. In some models where c
lescence or pair annihilation are present the inactive pha
critical and in the universality class of diffusion-annihilatio
@16#; however the transition between active and inact
phases is characterized by another set of critical expone
Critical behavior characterized by the exponentsu50.5,z
52,b5n' continuously varying with a parameters has been
found by Lipowski in a different model with continuou
bond variables@17#.

Additional information on the critical dynamics of sys
tems with absorbing states is usually provided by criti
spreading; in such experiments, one studies the time ev
tion of a small perturbation to an otherwise absorbing c
figuration. In each spreading realization, the quantities
are usually measured are the total activity averaged ove
runs n(t), the survival probabilityP(t), and the linear size
over which the perturbation has spreadl (t). At the critical
point, these quantities have a singular behaviorn(t);th8,
P(t);t2d8, andl (t);t1/z8. In systems with an infinite num
ber of absorbing states, these exponents usually depen

FIG. 5. Log-log plot of relaxation timest vs L. The straight line
is a least squares linear fit; its slope is 2.02.
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the initial configuration, but satisfy the hyperscaling relati
h81d81u5d/z8 @15#.

We have performed spreading experiments forl50.3.
The starting configuration was obtained by randomly distr
uting NA particlesA among theL sites of a chain, and filling
the empty sites withB particles; then at the center of such
configuration we placed a doubly occupied site. Averag
were done over a set of 5000 independent trials. In Fig. 6
show a histogram of the distribution of active sites obtain
at three different stages. Clearly, this distribution is far fro
uniform in the region of sizel over which the perturbation
has spread.l is approximately linear int; this can be associ
ated with configurations likeB B 0 AB A A A, where the
active site moves to the right each time it is selected. On
other hand, we cannot expect the hyperscaling relation ab
~based on the assumption that deep inside the cluster
active site concentration approaches the steady state con
tration! to be obeyed.

A more detailed investigation of all the consequences
different choices of initial configurations is needed. Desp
the randomness present in the dynamics of the model,
question of ergodicity~often associated with hidden conse
vation laws! deserves further study. Indeed, we have an
dication that time averages from certain initial configuratio
do not coincide with averages over a large number of tria
whether the fraction of such initial configurations vanishes
the thermodynamic limit or whether they involve extreme
large relaxation times to reach the steady state needs t
clarified.

A field theory approach to describe nonequilibrium sy
tems with two conserved fields would be most desirable
view of the critical behavior found in this system.

I thank M. A. Santos and J. F. F. Mendes for useful d
cussions and comments on the manuscript.

FIG. 6. Histogram of the distribution of active sites for th
spreading of a perturbation at the center of the lattice (L580 000)
~from top to bottom,t52000,3000,4000).nAB( i ) is the number of
active sites in the interval@80(i 21)11,80i #. Averages were done
over 5000 independent samples.
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