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Critical behavior of a nonequilibrium system with two nonordering conserved fields
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We investigate the critical behavior of a nonequilibrium system with two particle spAcesd B that
exhibits a continuous absorbing-state phase transition. The number of particles of each $peaiesdNg) is
conserved by the dynamical process. Numerical results show that the order parameter egmtepmsrids on
the ratioNg /N, at criticality. Some aspects of critical dynamic behavior are also studied, namely, the decay of
the active density at criticality and the critical spreading of a perturbation to an absorbing configuration.
Anomalies in the relaxation are associated with the presence of different time scales in the dynamics of the
model.
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A considerable number of nonequilibrium models exhib-is the transfer of just one particle from the active site to the
iting phase transitions from active to absorbing phases havallowed neighbor(if there are two different possibilities,
been investigated over recent yeft3. These studies give each one is chosen randomly with probability 0.5). Thus,
strong support to the conjecture made by Grassbéfjénat ~ when both neighbors of the active site are empty, or when
continuous transitions to a unique absorbing state fall generPne is empty and one is active, the number of active sites
cally in the universality class of directed percolatitbP),  decreases by 1, whereas it increases by 1 if each neighbor is
provided there are no additional symmetries or conservatioaccupied by a particle of a different species; in the other
laws and only short range interactions are present. The stat@ases, there is simply a redistribution of vacant and doubly
critical behavior of various models with an infinite number and singly occupied sites in the neighborhood. It is obvious
of absorbing states also falls in the DP universality class. that the numbers of particles of each species are conserved

Nonequilibrium models with extra symmetries or con-by the dynamics. This model can be considered a two-
served quantities, and indeed out of DP, have also been iispecies generalization of a conserved threshold transfer pro-
vestigated. Models where the parity in the number of parcess[8,15].
ticles is conserved3-5] or with a complete symmetry We performed numerical simulations of the stationary
among absorbing stat¢§], as well as models where both properties of the model. System sizes varied betwken
features are presefi], all fall in the parity conserving uni- =200 andL=4000, the number of time steps between
versality class. More recently, models where one quantity=2x10* andt=2x10° (closest to the critical poijt and
(the total number of particle@ss conserved led to the identi- we averaged over 200 to 2000 independent samples. The
fication of other universality classes: clearly, conserved latinitial configuration was generated by randomly distributing
tice gase$8], stochastic sandpile models with conserved enthe (N,) A particles and theNg) B particles among thé
ergy [9,10], and the nondiffusive limit of the two-species sites of the lattice, and periodic boundary conditions were
reaction-diffusion mod€l11] all fall in the same universality used. For a fixetN, and a smalNg (<L—N,), there are no
class; different critical behavior is expected, however, if, indoubly occupied sites in the stationary state and the system
the last model, both types of particle are allowed to diffusecannot evolve from there; this corresponds to the inactive
[12-14. phase. As we increaddg, the system undergoes a phase

In this work we consider a nonequilibrium system wheretransition to an active phase, where the concentration of dou-
two quantities are conserved. The model is defined such thély occupied sitegthe order parametes,g) is nonzero. In
each site of a one-dimensiondD) lattice can be in one of Fig. 1 we showp,g as a function ofNg for L=2000 and
four states: empty, occupied either by ofver oneB par-  different values oN, .
ticle, or doubly occupied by on& and oneB particle. Two As can be seen, the transition occurdNgt=L—N,. The
particles of the same species are not allowed to occupy thieng relaxation times that appear, as one might expect, very
same site. The site is considered active if it is occupied by &lose to the critical point can be associated with configura-
pair (AB) of particles. Once an active site has been selectetions like A A0 AB B B B ABO B B, where active sites
(sequentially, the dynamics proceeds as follows. If eachhave one empty neighbor. If one waits long enough, one
neighbor is occupied by a particle of a different species, ifis left with just one of these active sites with one empty
both neighbors are empty, or if one is empty and the otheneighbor. Once periodic boundary conditions are being
one occupied by one particle, then the active site becomassed, this applies also to configurations like
vacant and each neighbor receives one of its particles. If botA A ABO B B ABO B B where the distance between the
neighbors are active, no transfer can occur; otherwise, thettgvo active sites fluctuates around the initial value in a ran-

dom walk way and therefore the two active sites can be close
to each other and coalesce into one active site after a suffi-
*Electronic address: mcmarg@fc.up.pt ciently long time. FoNg=L—N,, and except for the case
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FIG. 1. pag as a function ofNg for L=2000 and different

values ofN, : Nx=2000(A), 1400(0), 1000(C1), 600(). FIG. 3. Log-log plot ofy vs x for A\=0.5 (), A=0.3(<). The

straight lines are least squares linear (&opes of 0.50 and 0.82,

. . . . . respectively.
of an initial configuration with no doubly occupied and no

empty siteqwhich occurs with a very small probabiljtythe
concentration of doubly occupied sites at stationarity is the
pi=1/L, and becomes zero in the thermodynamic limit.
WhenN,j=L, anyB particle that is being added leads to
an active site(which, given the prescribed dynamics, will de
move around in a random walk wagnd there is no possi-
bility of having an empty site; therefore,g grows linearly
with Ng. The situation is different foNp#L. For a clear
comparison of the critical behavior that occurs for different
values ofN,, we rescaled variables §5=pag/(NA/L), X
=(Np+Ng—L)/N,, so that the transition always occurs at
X.=0 andy=1 whenNg=L; in Fig. 2 we have plotteg vs T . .
xcfor the same data used in Fig. 1. As can be seen, the ordgr‘\B(rt]) vsht for.)\—o.3 and czlffr:erent system sizes. it fol
parameter follows a power law~x”, but 8 is a function of The short-time decay_c;, t ? order parameter density fol-
N, . In order to extract this exponent we have used a log-lod®WsS @ Power lawp,g~t~" [§'=0.2095)] over a few de-
plot (as represented in Fig.):3this yields 3=0.821) and cades.; since .thIS is independent of the size, it is pro_bably
B=0.501) for No=600 andN,=1000, respectively. Al- assomated_ Wlth a purely local process. For longer times,
though the curvey vs x for N,=600 andN ,= 1400 do not pAB_(t) exh|b|t§(§i sharp drop and enters a second power-law
coincide, the exponerg is the same, within numerical accu- "€9ime pag~t~" [6=0.491)] before the final approach to
racy. As a matter of fact the dynamics is completely sym-th€ steady state. o _
metric under the exchange &fand B particles, so one ex- The rellaxatlon t|_mes-(L) at c_rltlcah_ty can be obtained
pects the same behavior right at criticality, fi,= 600, from the I|r_1ear poruon(C?f a semllogarlthmm plot of the ex-
Ng=1400 and forN,=1400, Ng=600; althoughp de- C€SS densitypap(t) — pag. These relaxation times are ex-
scribes the off-critical singularity, it is indeed plausible thatPected to scale ag(L)~L*“ The present data are consistent
it should be the same in both cases. Accordingby)),

Ipe symmetric around 0.5; of courgecannot be defined for
A=0 since in the absence & particles there is no active
phase at all.
According to the finite size scaling ansatz the stationary
nsity of active sites at the critical point follows a power-
law behaviorp{~L 7", wherev, is the exponent that
characterizes the divergence of the correlation length. This
gives B/v, =1 for all \.

We then considered time dependent quantities. First we
studiedpag(t) at criticality, using homogeneous initial con-
figurations, as before. In Fig. 4, we show a log-log plot of

whereX=(N,/L) [N=1/(1+Ng/N,) at criticality] should o— 7T T 7T T
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FIG. 2. The same data as in Fig. 1, wiyl=pag/(Na/L), X line ————— has slope#=0.49. The straight line----—--- — has
=(Nap+Ng—L)/Nj4. slope 0.209.
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with z=2 (see Fig. 5 however, delimiting the linear part in i
the semilogarithmic plot is a source of numerical error. Also,
the above estimate fof is consistent with the scaling rela-
tion 6=pg/vj=plv,z , so the second power-law regime is
likely to describe the asymptotic evolution of the order pa-

FIG. 6. Histogram of the distribution of active sites for the
spreading of a perturbation at the center of the lattice- 80 000)
(from top to bottomt=2000,3000,4000)n,g(i) is the number of

. - - active sites in the intervdl80(i — 1)+ 1,80 ]. Averages were done
rameter density. A more detailed study of the effects of ini-g,er 5000 independent samples.

tial conditions, better statistics, and more extensive data are
required in order to establish whether the above exponents ] ) ) ) i
are affected by the details of the initial preparation. the initial configuration, but satisfy the hyperscaling relation
Different scaling regimes have been found previously in7’ + 6"+ 6=d/z’ [15].
models with just one kind of particiéand one conserved ~ We have performed spreading experiments Xer0.3.
quantity, the total number of these partiglg¢9,10]. In the  The starting configuration was obtained by randomly distrib-
1D fixed energy version of the Manna stochastic sandpileiting N particlesA among thel sites of a chain, and filling
model studied irf10], the initial dynamics is dominated by the empty sites witlB particles; then at the center of such a
relaxation of the initial grain profile, whereas some slow re-configuration we placed a doubly occupied site. Averages
laxation is likely associated with long-wavelength densitywere done over a set of 5000 independent trials. In Fig. 6 we
variations. In the present model there are two types of parshow a histogram of the distribution of active sites obtained
ticle and more complex relaxation processes can be ext three different stages. Clearly, this distribution is far from
pected. However, the long-time dynamics appears to be conmiform in the region of sizé over which the perturbation
trolled by random walk processes. These are indeed presefis spread. is approximately linear itt; this can be associ-
wherever an active particle is surrounded by particles of theeq with configurations lik B 0 AB A A A where the
same speciesB B AB B B Bor AA AB A A also, the  5:1ive site moves to the right each time it is selected. On the
process by which two active sites reduce to one is randorgyner hand, we cannot expect the hyperscaling relation above
walk like, as explained above. In some models where coay, g0 on the assumption that deep inside the cluster the

Ie_sc_:ence or pair ann!hllatlo_n are presen_t the_ |nact|v_e ph:_;\se Ketive site concentration approaches the steady state concen-
critical and in the universality class of diffusion-annihilation .
tration) to be obeyed.

16]; however the transition between active and inactive L S
[16] A more detailed investigation of all the consequences of

hases is characterized by another set of critical exponents, : o - . ) .
P y b a|fferent choices of initial configurations is needed. Despite

Critical behavior characterized by the exponefits 0.5z h d in the d . f th del th
=2,8=v, continuously varying with a parametehas been € randomness present in the dynamics of the model, the

found by Lipowski in a different model with continuous question of ergodicityfoften associated with hidden conser-
bond variableg17]. vation lawg deserves further study. Indeed, we have an in-

Additional information on the critical dynamics of sys- dication that time averages from certain initial configurations
tems with absorbing states is usually provided by criticaldo not coincide with averages over a large number of trials;
spreading; in such experiments, one studies the time evolihether the fraction of such initial configurations vanishes in
tion of a small perturbation to an otherwise absorbing conthe thermodynamic limit or whether they involve extremely
figuration. In each spreading realization, the quantities thaltarg_e_ relaxation times to reach the steady state needs to be
are usually measured are the total activity averaged over adllarified. _ -
runsn(t), the survival probabilityP(t), and the linear size A field theory approach to describe nonequilibrium sys-
over which the perturbation has spreiddl). At the critical ~ tems with two conserved fields would be most desirable, in
point, these quantities have a singular behavien) ~t”, view of the critical behavior found in this system.

P(t)~t~?, andl(t)~tY?". In systems with an infinite num- | thank M. A. Santos and J. F. F. Mendes for useful dis-
ber of absorbing states, these exponents usually depend onssions and comments on the manuscript.
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